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INTRODUCTION 

FIU is assisting DOE-EM’s Carlsbad Field Office (CBFO) and Pacific Northwest National 

Laboratory (PNNL) in developing a groundwater-basin model for the Waste Isolation Pilot Plant 

(WIPP) site using the Advanced Simulation Capability for Environmental Management 

(ASCEM) modeling toolset to assist DOE-EM improve the current understanding of the regional 

water balance, particularly the relation between Culebra recharge and the intense, episodic 

precipitation events typical of the monsoon. This relationship is essential for understanding the 

rate of propagation of the shallow dissolution front, and the impact of land-use changes around 

the WIPP facility on water levels in compliance-monitoring wells.  

ASCEM is an open source processed based computational framework for prediction of 

contaminant fate and transport in natural and engineered systems across DOE sites. Currently, 

ASCEM is unable to account for land surface hydrology, which is essential for computing the 

water balance. The proposed work will therefore require coupling of a state-of-the-art open-

source land surface model (LSM) with the groundwater models (GWMs) within the ASCEM 

toolbox to simulate three-dimensional, unsaturated and saturated water flow. A revision of the 

current site conceptual model will be necessary to couple surface water and groundwater 

processes, which requires a high resolution digital elevation model including channels and sink 

holes to account for surface water routing, and the development of a new mathematical model. A 

high-resolution (1-m/sub-meter) DEM of the WIPP region is not currently available, therefore 

FIU plans to develop a high-resolution digital elevation model (DEM) for the WIPP site and 

surrounding basins using photogrammetric methods to better capture the ground surface 

topography and local features. A high resolution DEM of the site will enable more accurate 

delineation and extraction of features such as drainage basins, brine lakes, channels, sink holes 

and discharge points and will also facilitate future creation of spatially-distributed soil and 

vegetation classes. 

Due to the cost of acquiring and processing LiDAR data for DEM development, the use of 

unmanned aerial vehicles (UAVs) to acquire digital photos is becoming more common. 

However, UAV-based point clouds do not represent the bare earth surface as well as LiDAR. 

This literature review therefore serves to investigate various ground filtering and machine 

learning methodologies for vegetation identification and removal from UAV-based 

photogrammetric digital surface models (DSMs) in order to improve DEM accuracy. The use of 

UAV-based photogrammetric methods provides a more affordable approach for DEM 

development. In conjunction with the appropriate ground filtering or machine learning 

methodology, it can provide researchers with accurate representations of the bare earth for 

development of land surface and hydrological models. Coupling of a LSM with the ASCEM 

GWMs will lead to more accurate predictions of groundwater flow patterns in the WIPP region, 

including horizontal flow (e.g., potentiometric surface, flow direction, vertical flow into 
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transmissive units, and the effect of density on flow direction). With improved estimates of the 

spatial and temporal patterns of recharge to force the GWM, predictions of halite dissolution and 

propagation of the shallow dissolution front will be made possible and the potential impact on 

repository performance quantified.  
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RELEVANT PUBLICATIONS 

FIU conducted a literature review of methodologies for vegetation removal from UAV-based 

photogrammetric DSM for the Waste Isolation Pilot Plant (WIPP) The following are some of the 

journal articles reviewed arranged in chronological order with the latest techniques first: 

METHODOLOGIES FOR VEGETATION REMOVAL FROM UNMANNED AERIAL VEHICLE 

(UAV)-BASED PHOTOGRAMMETRIC DIGITAL SURFACE MODELS  

COMPARING FILTERING TECHNIQUES FOR REMOVING VEGETATION FROM 

UAV-BASED PHOTOGRAMMETRIC POINT CLOUDS 

Anders, N., Valente, J., Masselink, R., & Keesstra, S. (2019). Comparing Filtering Techniques 

for Removing Vegetation from UAV-Based Photogrammetric Point Clouds. Drones, 3(3), 61. 

There are many methods used to process LiDAR-derived point clouds and classify vegetation 

points, but they are not applicable to point clouds derived with photogrammetry. The use of 

Structure-from-Motion (SfM) to generate digital elevation models (DEM), which can contain 

information below dense vegetation unlike aerial images, has increased over time but there has 

not been a formal comparison of existing methods to determine which is best considering 

different settings, locations, and DTM applications. Therefore, the goal of this study was to 

evaluate the performance of different vegetation filtering algorithms for SfM-obtained point 

clouds. The filtering algorithms evaluated and compared were: color-based filtering using an 

excessive greenness vegetation index (VI), Triangulated Irregular Networks (TIN) densification 

from LAStools, the standard method in Agisoft Photoscan, Iterative Surface Lowering (ISL), and 

a combination of ISL and VI methods.  

Methodology 

This study was conducted in the Guadalantin basin in the Mediterranean region where grasses 

and shrubs dominate.  

 

Figure 1. The left image is the map view of the study area in the Guadalantin Basin near Lorca and Murcia, 

Spain. The right image shows the spatial distribution of ground control points and reference points. 
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A fixed wing Mavinci Sirius 1 Unmanned Aerial Vehicle (UAV) with a 1.6 m wingspan and 

mass of 2.6 kg was used to collect aerial images. The camera used was a Panasonic Lumix GX1 

16 MP camera (focal length 20 mm, aperture F1.7, exposure tune 1/1600). The average flight 

altitude is 100 meters which resulted in images with an average ground sample distance (GSD) 

of 2 cm. There were 15 ground control points (GCPs) well distributed throughout the area at 

relatively low, medium, and high locations. The GCPs were 80 x 80 cm orange textile rectangles 

with a 30 x 30 cm black textile square with a CD on top. The coordinates of the center of the CD 

were measured with a TopCon HIPer Pro GNSS RTK receiver. The flight lines were 

programmed for the images to have 85% overlap in flight direction and 60% side overlap. A 

point cloud was then created from the images using Agisoft Photoscan and configured to 

“aggressive depth filtering” for dense point cloud processing.  

Filtering Based On Excessive Greenness Index 

Point clouds can contain color values that can be used to classify points, such as using thresholds 

of absolute color values or via vegetation indices. Vegetation indices are used to classify image 

pixels with vegetation information from other pixels such as bare ground, infrastructure, or 

clouds. The most effective vegetation indices are based on green, red, red-edge, near infrared 

and/or infra-red bands, such as the Normalized Difference Vegetation Index (NDVI) and the 

Enhanced Vegetation Index (EVI), but light-weight UAVs with a basic camera equipped with 

CMOS sensors are sensitive to visible light until near-infrared (NIR) (400-900 nm) with RGB 

channels and filters that block any radiation above 650 nm.  

The Visible Vegetation Index (VVI) is an index between 0 and 1, where if the values are close to 

zero then it is bare ground and if the value are closer to1 then it is vegetation. The following 

equation is used: 

𝑉𝑉𝐼 = [(1 − |
𝑅 − 𝑅0

𝑅 +  𝑅0
|) × (1 − |

𝐺 − 𝐺0

𝐺 +  𝐺0
|) × (1 − |

𝐵 − 𝐵0

𝐵 +  𝐵0
|)]

1
𝑤

 

where R,G, and B are the red, green, and blue channels, RGB0 is the vector of the reference 

green color (this study used R0=40, G0=60, B0=10), and w is the weight component (this study 

used w=1).  

Excessive Greenness Index (ExG) is a continuous index where higher values indicate more green 

surfaces and low values indicating bare ground. The following formula is used: 

𝐸𝑥𝐺 = 2𝐺 − 𝑅 − 𝐵 

This study calculated and visually compared the VVI and ExG and found that VVI was most 

useful when recognizing subtle differences between types of vegetation and with ExG there was 

a higher contrast between vegetation and bare ground. Because the point was to classify 

vegetation and bare ground, ExG was used. During filtering, any point with an ExG>0.1 was 

removed from the point cloud. 
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TIN Densification 

The TIN densification method is primarily based on the Triangular Irregular Networks where a 

sparse TIN is first created based on a minimum number of points. Next, points are iteratively 

added to the TIN to create a more detailed TIN, if the points meet certain criteria of the triangle 

within an established threshold. The threshold was established and updated after every iteration. 

Points in the TIN at the end of densification are accepted as a representation of the bare earth 

surface and the rest are classified as objects. The lowest points are the ones added to the 

triangulation and this retriangulation is repeated until no triangle has a point beneath it.  

LAStools consists of a collection of command-line tools for processing point cloud data, 

including an implementation of ground point filtering using TIN densification. This study used 

LAStools, more specifically the lasground_new.exe, to filter ground points.  

Agisoft Photoscan Native Filtering Algorithm 

Agisoft Photoscan is a popular software product used to process aerial imagery and create point 

clouds, DEMs, and orthorectified mosaics which are used in this study. Agisoft includes a native 

implementation of ground point filtering that allows for threshold parameters which includes 

max angles between terrain and line to connect the point (15 degrees, higher values can improve 

results in steeper regions), max distance between terrain and a point (1 m), and cell size of the 

intermediate terrain (5 m, which is the max expected data gaps because of buildings and/or 

trees). Parameters were set based on which produced visually best results. 

Iterative Surface Lowering (ISL) 

ISL is similar to the TIN Densification method in that it iteratively changes a preliminary surface 

based on varying sets of points. First, all points are interpolated into a regularly gridded raster 

with a given cell size (1 m was chosen based on manual heuristics). All points above the surface 

are classified as vegetation points and points below are classified as ground points. The 

following iterations only include ground points to the surface interpolation. When there are no 

more points that change labels, the interpolated surface is assumed to represent ground surface.  

ISL+VI 

This method combines the ISL and ExG by removing vegetation points using the VI method and 

used the selection of ground points as the start for the ISL method.  

Output 

Each of the five test runs produced a classified point cloud and a number of rasters with 25 x 25 

cm grid cells. If there were gaps, they were filled using Inverse Distance Weighting (IDW, 

weight=1/distance
2
) interpolation.  

Error Assessment of Resulting DTMs  

There were 15 reference points chosen for each vegetation category (bare ground, shrubs, and 

trees) and distributed throughout, totaling 45 reference points. To quantitatively assess the 
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results, an ANOVA test was used on the absolute error values per reference point per land cover 

class and if there were significant differences, the Tukey Honest Significance Difference (Tukey-

HSD) test was used. To qualitatively assess the results, profiles were drawn on the DTMs to 

highlight the differences on a linear hillslope with alternating shrubs, a linear hillslope with 

alternating shrubs with a single tree, a channel surrounded by vegetation, a patch of trees and a 

hillslope with multiple patches of trees.  

Results  

Table 1. Number of points in point cloud per filter method and the percentage of the total amount of original 

points filters in each class. Root Mean Square Error (RMSE) showed for each land cover class. 

 

 

Figure 2. Boxplots for the three vegetation classes depicting the elevation differences between the reference 

points and the interpolated DTM after filtering.  
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Figure 3. Colored point clouds showing the locations of the filtered vegetation points for a subset of area 

within the study area. 

 

Figure 4. Profiles showing a similar image as the colored point clouds. 



 Literature Review of Methodologies for Vegetation Identification and Removal 

Conclusions 

The study concluded that there was little to no difference between the filtering methods which 

can be explained by the fact that there was very little vegetation in the study area. For shrub and 

tree areas, the ISL, VI and TIN methods were concluded to be the best. It was determined that 

“off the shelf” algorithms are the best for vegetation removal and it is best to use more custom 

methods such as the TIN densification. 

IMAGE CLASSIFICATION-BASED GROUND FILTERING OF POINT CLOUDS 

EXTRACTED FROM UAV-BASED AERIAL PHOTOS 

Yilmaz, V., Konakoglu, B., Serifoglu, C., Gungor, O., & Gökalp, E. (2018). Image classification-

based ground filtering of point clouds extracted from UAV-based aerial photos. Geocarto 

international, 33(3), 310-320. 

Due to the cost of acquiring and processing LiDAR data, the use of unmanned aerial vehicles 

(UAVs) to acquire digital photos is becoming more common. However, UAV-based point clouds 

do not represent the bare earth surface as well as LiDAR. This study proposes a ground filtering 

methodology to filter UAV-based point clouds.  

Support vector machines classification algorithm  

The support vector machines (SVM) statistical learning theory separates classes with a decision 

surface (also known as an optimal hyperplane) maximizing the margin between the classes. Data 

points closest to the decision surface are ‘support vectors’. If the classes are linearly separable, 

then two parallel planes maximizing the margin between the classes are formed and an optimal 

hyper plane is placed in the middle of these parallel planes. Standard quadratic programming 

optimization techniques are used to maximize the margin between each class. If the classes 

cannot be linearly separated, each vector of a class is transformed into another higher 

dimensional space using a nonlinear transformation to increase the possibility of separating 

classes with a linear hyperplane.  

Methodology 

Two flights were conducted over the study area of the Karadeniz Technical University because 

the area was too large for just one flight. A Gatewing X100 UAV was used with a RICOH GR 

DIGITAL IV Digital Camera that was mounted on the UAV. The digital camera, which produces 

red, green, and blue bands, was calibrated before each flight. Twelve ground control points 

(GCPs) were established on the lower campus are and 4 GCPs were placed in the upper campus. 

For the first flight, 256 aerial phots were taken from 185 m above along 9 flight paths while for 

the second flight, 160 aerial photos were taken from 175 m along 10 flight paths. After the 

flights, the images were processed on Agisoft Photoscan Professional software. Once imported 

onto Agisoft, the quality of each photo was analyzed and the low quality photos were removed 

because they could affect the alignment result. Next, a key point extraction was done photo by 

photo. Agisoft used the GCPs to georeference the point cloud produced after image matching 

and then calculated the 3D coordinates of the key points with automatic aerial triangulation. 

Next, a sparse point cloud with point density 0.5 point/m
2
 was created. To create a high 
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resolution digital elevation model, the density of the created point cloud was increased using 

Agisoft. The software does this by calculating depth information for each camera and combines 

them into a single, dense point cloud based on the estimated camera positions. The resulting 

increased point cloud density was 152 point/m
2
. Next, the generated point cloud was visually 

examined and it was found that there were points located too far from the study area and they 

were then deleted manually. The 3D mesh and model texture were then generated in the software 

to reconstruct the texture information. The final step was to produce a 10 cm orthophoto image 

of the study by processing the point cloud.  

The ENVI software’s SVM classifier was used to classify the orthophoto images taken into six 

classes: road, building, soil, grass, shadow, and tree; and red, green, and blue bands were used in 

the process. The classes road, grass, and soil were merged to generate the ground class. The 

classes building, shadow, and tree were merged to generate the non-ground class. The accuracy 

of the classified image was calculated with an error matrix and the McNemar test. Then, the 

classified image was overlapped with the generated point cloud to determine the points 

corresponding to the non-ground class. The determined non-ground points were then removed. 

The accuracy of the ground filtering process was determined using the Cohen’s Kappa 

coefficient. The ground points were then interpolated to produce the DEM. To determine the 

vertical accuracy of the produced DEM, field measurements were conducted in four test sites. 

 

Figure 5. (a) Gatewing X100 UAV, (b) RICOH GR DIGITAL IV digital camera, (c) Technical specifications 

of the digital camera, (d) Orthophoto of the study area (10 cm), (e) Image produced with SVM classification 

algorithm 
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Figure 6. Orthophoto image draped over (a) DSM and (b) produced DEM 

 

VEGETATION REMOVAL FROM UAV DERIVED DSMS, USING COMBINATION OF 

RGB AND NIR IMAGERY 

Skarlatos, D., & Vlachos, M. (2018). Vegetation removal from UAV derived DSMS, using 

combination of RGB and NIR imagery. 

 

The focus of this study was to create a detailed Digital Terrain Model (DTM) from drone aerial 

imagery by automatically filtering the vegetation on the Digital Surface Model (DSM) through 

standard control point acquisition.  

Methodology 

The methodology consisted of using NDVI to classify DSM points as vegetation and non-

vegetation points, then using the non-vegetation points to create a DTM using interpolation to fill 

in any gaps that were created from the exclusion of the vegetation points. The high resolution 

multispectral imagery with 4 channels (red, green, blue, and near infrared) and a dense DSM 

were the inputs.  
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Figure 7. Diagram of methodology 

 

The NDVI method was chosen and can be defined as: 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 

According to the study, the most common practice for NDVI calculation is to create two 

orthophotomosaics, an RGB and a NIR, and calculate the NDVI using the data from each 

orthophotomosaic. Once this is done, a threshold is defined for the mask creation. The threshold 

can be defined depending on illumination differences, vegetation type, topographic variations, 

sensor sensitivity, epoch, leaf coverage, etc. A low NDVI threshold can mask out valid ground 

points whereas a high threshold will include vegetation points and therefore worsen the accuracy. 

This study used a threshold of 0.09. Next, an interpolation algorithm was applied to fill in any 

gaps caused by the removal of vegetation points. 

Study Area 

Two areas were chosen for testing, based on the availability of GCPs among vegetation and bare 

ground. Two flights were done, one with the RGB camera and the other with the NIR camera. 
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The imagery collected was then processed on Agisoft Photoscan to create two orthophotos and a 

dense DSM.  

 

 
Figure 8. Ground photos of Test Site A- Kimisala, Greece 

 
Figure 9. Test Site A DSM and GCPs 

 
Figure 10. Test Site A orthophotomosaic, with 1 m contours 
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Figure 11. Test Site A -NIR orthophotomosaic with reference points 

 
Figure 12. Ground photos of Test Site B- Vasiliko area, Cyprus, Greece 
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Figure 13. Ground photos of Test Site B 

 
Figure 14. Test Site b NIR orthophotomosaic with reference points (left) and Test Site B orthophotomosaic, 

with 1 m contours (right) 

Results 

A threshold of 0.09 was chosen and a cubic interpolation was done to Test Site A and a linear 

interpolation was done to Test Site B. 
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Table 2. RGB and NIR processing results of Test Sites A and B 
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Figure 15. Initial mask with NDVI threshold of 0.09 (left) and after morphological filtering (right for Test 

Site A (top) and Test Site B (bottom) 

 

 
Figure 16. Test Site A; Overlaid contour lines on the initial DSM (top left), mask (bottom left), 1 m contour 

lines overlaid on the derived DTM (top right), and NDSM (bottom right) 
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Figure 17. Test Site B; Overlaid contour lines on the initial DSM (top left), mask (bottom left), 1 m contour 

lines overlaid on the derived DTM (top right), and NDSM (bottom right) 

 

To evaluate accuracy, a large amount of reference points were gathered on areas of vegetation 

and bare ground. The height precision of a point from an impeccable stereopair is given by: 

σz =
H2

cB
σp 

where    σz, the accuracy of elevation 

H, the flying height above the object 

c, the principle distance 

B, the base of the steropair 

σp, the precision of measuring x − parallax 
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Table 3. Statistics of errors on reference point which are classified as ground or vegetation points based on 

the NDVI masks created. 

 

Conclusions 

The study concluded that incorporation of NIR imagery to eliminate vegetation from a DSM can 

increase the DTM’s accuracy. This method can produce DTMs that describe the terrain well 

enough to act as an alternative option when LiDAR is not available. The quality of results 

depends on various factors such as morphology, density, area covered by vegetation, the NDVI 

threshold, and the interpolation method used.   

 

COMPARISON OF THE PERFORMANCES OF GROUND FILTERING 

ALGORITHMS AND DTM GENERATION FROM A UAV-BASED POINT CLOUD  

Serifoglu Yilmaz, C., & Gungor, O. (2018). Comparison of the performances of ground filtering 

algorithms and DTM generation from a UAV-based point cloud. Geocarto international, 33(5), 

522-537. 

Compared to LiDAR technology, Unmanned Aerial Vehicles (UAVs) are much less costly and 

easier to use. This study evaluated five widely used ground filtering algorithms: Progressive 

Morphological (PM) 1D/2D, Maximum Local Slope (MLS), Elevation Threshold with Expand 

Window, and Adaptive TIN. This study used ALDPAT v.1.0 software to test the algorithms. 

Progressive Morphological 1D/2D Algorithm  

PM uses an elevation difference threshold and a window whose size increases gradually to 

remove points belonging to above ground objects with different sizes. The algorithm generates a 

regularly spaced minimum surface grid by using the minimum elevation values in each cell. If a 

grid does not have elevation values then the elevation of the closest point will be assigned. The 
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PM algorithm uses dilation and erosion operations. The first operation is performed successively 

as the window size increases gradually. The window can either be one-dimensional (PM1D) or 

two dimensional (PM2D). dhP,k is the elevation difference between the original and filtered 

surface at point P in the kth iteration, and dhT,k is the elevation difference threshold. In each kth 

opening operation, if dhP,k ≤  dhT,k then the point is labelled as a ground point. The iterations 

continue until the size of the window is greater than a predefined maximum value, which is 

chosen slightly greater than the size of the largest above-ground object.  

MLS Algorithm  

The MLS algorithm identifies ground points by comparing the local slope between each LiDAR 

point and neighboring points. This algorithm overlaps LiDAR points with a regularly spaced grid 

network where each grid represents the elevation of the LiDAR points. Each point pj(xj,yj,zj) is 

assigned to each grid with respect to x and y coordinates. If more than one point falls into the 

grid, then the elevation of the grid is set to the elevation of the point with the minimum elevation 

is identified. The ground point, p0(x0, y0, z0), is identified if the maximum slope, s0,max, between 

point p0 and points within a predefined radius is smaller than a predefined maximum slope 

threshold.  

 
Figure 18. MLS algorithm parameters 

ETEW Algorithm 

The ETEW algorithm classifies ground and non-ground points by using a search window whose 

size gradually increases. Firstly, the data is divided into square grid cells and all points except for 

the ones with minimum elevations are removed. The grid size is increased in the next iteration 

and a minimum elevation is defined. The elevation differences between the lowest point and the 

other points are calculated and any points higher that the predefined elevation threshold are 

removed. The algorithm increases the grid size and threshold values with each iteration until 

there are no more points to remove. Let Zi,j be the elevation value of point pi,j in the jth grid in the 

ith iteration, Zi,j,min be the minimum elevation value in the grid, and hi,T be the elevation 

difference threshold. If Zi,j - Zi,j,min > hi,T then point pi,j is removed in the ith iteration. 

 
Figure 19. ETEW algorithm parameters 
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ATIN algorithm 

The ATIN algorithm uses the distance between each point and generated TIN surface to identify 

ground points by firstly dividing the data into square grids. The seed points, points with 

minimum elevations in initial ground data, are then chosen for each grid and used to generate the 

reference TIN surface. Candidate points, unclassified ground points, are added to each of the 

triangles in the TIN and classified by using the distance between the candidate point and 

triangular surface and the angle between the candidate point and vertices of the triangle. 

Candidate points are classified as ground points if the calculated distance and angle are smaller 

than predefined thresholds. This process continues until all points are classified. 

 

 
Figure 20. ATIN algorithm parameters 

Accuracy assessment of the filtered point clouds 

There are two types of error in the process: omission and commission. Omission error occurs 

when there is incorrect removal of the ground points and commission error is where non-ground 

points are classifies as ground points. To evaluate the ground filtering process, randomly select 

test points. These points and all points whose distances to the selected test points are smaller than 

a predefined threshold are also selected as test points. One hundred test points were selected 

from each point cloud (i.e. the raw, low-density, medium-density and high-density point clouds). 

To acquire the same amount of test points for all densities, a radius threshold of 3, 1, 0.5, and 

0.15 m for the raw, low-density, medium-density, and high-density data, respectively was used. 

As a result, 688, 662, 637 and 700 test points were chosen for the raw, low-density, medium-

density and high-density data, respectively. The metric used to assess accuracy are type I, type II, 

and total error which are given as: 

𝑡𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 =
𝑎

𝐺𝑃
 

𝑡𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟 =
𝑏

𝑁𝐺𝑃
 

𝑇𝑜𝑡𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 =
𝑎 + 𝑏

𝐺𝑃 + 𝑁𝐺𝑃
 

where a is the number of the ground points classified as non- ground (omission), b is the number 

of the non-ground points classified as ground (commission), GP is the total number of the ground 

points, and NGP is the total number of non-ground points.  
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The McNemar test was also used to evaluate accuracy of the filtering algorithms. The McNemar 

test calculates the chi-squared value between two data sets. The difference of the two datasets is 

significant if the calculated chi-squared value is greater than the critical value.  

DTM generation 

Ordinary Kriging (OK) algorithm was used to interpolate the DTM of the study area. 

Interpolation was conducted using script written in MATLAB. The resolution of the DTM was 

estimated by: 

𝑆 = √
𝐴

𝑛
 

where n is the total number of points and A is the total area. 

Study area and data preparation 

The study area is the Karadeniz Technical University (KTU) campus in the city of Trabzon, 

Turkey. The area’s dimensions are 178 m x 410 m, which includes buildings and trees.  

 
Figure 21. Study area in Trabzon, Turkey 

 

 
Figure 22. Specifications of the RICOH GR DIGITAL IV digital camera 
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Before the flight, 12 ground control points (GCPs) were established and distributed evenly 

throughout the campus for georeferencing. A RICOH GR DIGITAL IV digital camera, the 

standard camera of the Gatewing X100 UAV, was used to capture images from an altitude of 

185 m. The 410 minute flight was conducted along 9 oaths and 256 aerial phots were captured. 

The resolution of each aerial photo was 7 cm. Agisoft Photoscan Professional software was used 

to process the aerial photos where key points are extracted phot by photo. After the GCPs are 

used to georeference the point cloud obtained with image matching and calculate 3D coordinates 

of the key points with automatic aerial triangulation. After, the raw point cloud with a density of 

0.1 point/m
2
 was generated. Agisoft Photoscan offers five density choices as lowest, low, 

medium, high and highest. In this study, low, medium, and high-density point clouds were 

generated. The software can also calculate depth information for each camera and combines 

them into a single, dense point cloud based on the estimated camera positions. The densities of 

the low-density, medium-density, and high-density point clouds are 4.2, 16.5, and 61.1 point/m
2
, 

respectively. Finally, a 25 cm orthophoto image was produced for the study area.  

Results 

The accuracy of the filtering results was tested quantitatively and qualitatively. Qualitatively, 

results were analyzed visually and was done by overlapping the filtered point cloud with the 

produced high resolution orthophoto image. Quantitatively, the test points were selected 

randomly from the unfiltered point cloud of each of the raw, low-density, medium-density and 

high-density data. Then, the filtered point cloud, test points, and orthophoto were overlapped to 

visually evaluate whether the test points were removed.  
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Figure 23. (a) Filtering results of the raw data, (b) filtering results of the low-density data 

 

 
Figure 24. Filtering results of the medium-density data, (b) filtering results of the high-density data 
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Figure 25. Calculated Type I error, type II error, and chi-squared values 

 
Figure 26. Graph of calculated type I error, type II error, and chi-squared values 

 

The MLS algorithm was found to be the one most affected by increase in point density but had 

the worst performance when filtering medium-density and high-density data. It is better to use 

the MLS algorithm to filter the sparse point clouds. The PM2D algorithm performed better than 

the PM1D algorithm, but the performances of the algorithms are close as the point density 

increases. Considering the total error and chi-squared values, the ATIN algorithm was found to 

be the most accurate and can be used to filter the point clouds with high densities.  
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Because the ATIN algorithm was found to be the most successful algorithm, the ATIN result was 

used to interpolate the DTM. The filtered point cloud contained 1,284,763 points and the study 

area covered 72,980 m
2
 which resulted in a spatial resolution of 25 cm for the DTM. 

 
Figure 27. Orthophoto image draped over the produced (a) DSM and (b) DTM. 

To test the accuracy of the produced DTM, test points were established within the study area. A 

total of 87 test points were established for flat areas (test site 1), 163 test points for sloping areas 

(test site 2), and 128 test points for areas close to above ground objects (test site 3). The Real 

Time Kinematik (RTK) GPS technique was used to measure positions of all test points. Root 

Mean Square Error (RMSE), Standard Deviation of Residuals (SDR), Mean Absolute Error 

(MAE), and Mean Error (ME) were calculated for each test site by using the measured elevation 

of the test points and their corresponding elevations on the DTM. The mathematical equations 

for RMSE, MAE, ME, and SDR are given as: 

 

METHODOLOGIES FOR VEGETATION IDENTIFICATION FROM UNMANNED AERIAL 

VEHICLES (UAV)-BASED PHOTOGRAMMETRIC DIGITAL SURFACE MODEL USING 

MACHINE LEARNING 

UAVs AND MACHINE LEARNING REVOLUTIONISING INVASIVE GRASS AND 

VEGETATION SURVEYS IN REMOTE ARID LANDS 

Sandino, J., Gonzalez, F., Mengersen, K., & Gaston, K. J. (2018). UAVs and machine learning 

revolutionizing invasive grass and vegetation surveys in remote arid lands. Sensors, 18(2), 605. 
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The goal of this study was to delineate a process to detect and create a pixel-wise segmentation 

of invasive grasses in Cape Range National Park, Australia. It involved the use of unmanned 

aerial vehicles (UAVs) equipped with high-resolution RGB cameras and a data processing 

approach using machine learning algorithms. 

 

Methodology   

 
Figure 28. Process Flowchart 

 
Figure 29. (a) Geographical Location with Cape Range National Park highlighted, (b) Aerial view of high 

density of buffel grass, (c) Area with high density of spinifex, (d) Area with low density of invasive grasses, (e) 

Buffed grass, (f) Spinifex 
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Data Acquisition 

A Canon EOS 5DsR digital camera with a 50.6 MP camera, 28 mm focal length, ISO-400 speed, 

a full frame complementary metal oxide semiconductor (CMOS) sensor of 36 mm X 24 mm, a 

625μs exposure time, and a GPS sensor was used and mounted on a DJI S800 EVO Hexa-rotor 

UAV. Over 500 images were collected and filtered and orthorectified on Agisoft Photoscan 1.2. 

The orthomosaic image was of 44,800 x 17,200 which was a huge size and because of this, it 

was split into 4,816 items of 400 x 400 pixels in Tagged Image File (TIF) and Keyhole Markup 

Language (KML) formats. Representative samples in cropped regions were classified using 

HNU Image Manipulation Program (GIMP) 2.8.22 to fit the classifier. The generated images 

were then processed with Python 2.1.17 and third party libraries for data manipulation machine 

learning, including eXtreme Gradient Boosting (XGBoost) 0.6, Scikit-learn 0.19.1, OpenCV 

3.3.0, and Matplotlib 2.1.0. 

 

Because the invasive grasses are found in a variety of regions, 10 images were carefully selected 

and evaluated through visual interpretation. Invasive grasses and other common vegetation were 

highlighted using the “Bucket fill” tool in the GIMP software. To label the images, a mask was 

created by assigning integer values to each highlighted pixel. Each bright colored pixel was 

filtered using the following equation: 

𝐻(𝑥,𝑦) = {
𝑎 𝑖𝑓 𝑆(𝑥,𝑦) = 𝐹(𝑅,𝐺,𝐵)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

where H is the mask of sample S and a is the integer value for each bright color value F(R,G,B). 

The values of a are defined as: 1= buffel grass, 2=soil and road, 3= bushes, 4= shadow, 5= dry 

vegetation, and 6= spinifex.  

 

 
Figure 30. Image labelling examples (a) Representative sample (b) Highlighted regions with bright colors 
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Classification Algorithm 

 

 
Figure 31. Classification Algorithm 

 
The algorithm identifies and filters the highlighted regions, trains a gradient boosted decision 

tree classifier, cross validates the classification rates, predicts unlabeled data, and displays 

results. The processing stage of the algorithm transforms the read data into a selection of features 

or attributes, which are consequently processed by the classifier. To get the feature array D, 

representative sample images, G, are first converted from the default RGB to the hue, saturation, 

value (HSV) color model. Next, filters are applied on G and the outputs are inserted into D. The 

2D filters are then used to calculate the variance into a subset of pixel neighbors in a window 

using the following equations: 

 
where X is the kernel of the filter to estimate the mean value of the processed image, w is the 

window size, and s
2
 is the variance defined as the subtraction between the estimation of mean of 

square and the square of the mean. The array of the features D has 10 items: hue, saturation, 

value, variance filters where w is 3 and 15, variance filters on saturation where w is 3 and 1, and 



 Literature Review of Methodologies for Vegetation Identification and Removal 

variance filters of the grayscale image from Gi where w is 3, 7, and 15. Next, previously labeled 

pixel locations are filtered with masks, H, using the equation: 

𝐷𝑗 = {
[𝐺𝑖(𝑥, 𝑦), 𝐻𝑖(𝑥, 𝑦)] 𝑖𝑓 𝐻𝑖(𝑥, 𝑦) ≠ 0

𝑛𝑢𝑙𝑙                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where Dj is the 2d output array of the operation, Gi(x,y) is the sample image, and Hi(x,y) is the 

labelled counterpart of Gi at position (x,y). In total, over 300,000 pixel wise samples were 

filtered and split randomly into a training and testing data array. Step nine of the algorithm 

consists of processing data into the XGBoost classifier that is optimized for large tree structures, 

high execution speed, and excellent performance. Step 11 consists of running a grid search 

method to estimate the hyper parameters for this classifier like the number of estimators, the 

learning rate, and the maximum depth and the grid search method returns the optimal 

combination. The optimal hyper- parameter values for this study were: estimators=100, learning 

rate =0.1, and maximum depth = 3. The estimators are the number of trees, the learning rate is 

the step size of each boosting step, and the maximum depth is the maximum depth per tree that 

defined the complexity of the model. Finally, the orthorectified images are processed in a loop 

using the trained classifier and the same data conversion considerations that were applied on the 

training section and the classified pixels are identified in distinguishable colors and exported as 

TIF.  

 

Results 

Table 4. eXtreme Gradient Boosting (XGBoost) classifier confusion matrix 

 
 

Table 5. Classification report from confusion matrix of Table 1 
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From Table 5, precision is defined by the ratio of true positives and the sum of true positives and 

false positives, recall is the ratio between true positives and the sum of true positives and false 

negatives, F-score is the mean of precision and recall, and support is the number of tested pixels 

per class. 
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Figure 32. Pixel-wise segmentation from RGB color model images using Algorithm 1 (a,c,e,g). Orthorectified 

RGB images with predicted classes (b, d, f, h,).  
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Figure 33. Predication of invasive grasses in Cape Range National Park displayed on Google Earth. 

 

Conclusions 

The accuracy and segmentation indicators served to validate the methodology to map vegetation. 

Any observed misclassification of buffel and spinifex were the result of human error when the 

sample data was first labeled. The proposed methodology showed detection rates of 96.75% and 

96% for single mapping of buffel grass and spinifex, respectively, and a multiclass detection rate 

of 96.54%. Invasive grasses were accurately detected at different spatial concentrations with a 

GSD of 1.015 cm per pixel. Moving forward, work will be focused on implementing 

unsupervised and supervised methods for labeling vegetation to reduce processing times.  

 

 

MULTI-FEATURE MACHINE LEARNING MODEL FOR AUTOMATIC 

SEGMENTATION OF GREEN FRACTIONAL VEGETATION COVER FOT HIGH-

THROUGHPUT FIELD PHENOTYPING 

Sadeghi-Tehran, P., Virlet, N., Sabermanesh, K., & Hawkesford, M. J. (2017). Multi-feature 

machine learning model for automatic segmentation of green fractional vegetation cover for 

high-throughput field phenotyping. Plant methods, 13(1), 103. 

 

Accurate vegetation segmentation from the background in digital images is a fundamental and 

challenging task in phenotyping. Digital RGB cameras are most commonly used for field 

phenotyping because they are affordable and portable in size. This study proposed a multi-

feature learning method to quantify vegetation growth. The proposed method was then compared 

with other state of the art methods with the following criteria: (1) comparison with ground-truth 
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images, (2) variation along a day with changes in ambient lighting, (3) comparison with manual 

measurements, (4) an estimation of performance along the full life cycle of a wheat canopy.  

 

Methodology 

The proposed machine learning method involved the acquisition of digital images in time series, 

extraction of multi-feature color transformation, a supervised classification model to label pixels 

as foreground or background, and noise reduction using median filtering.  

 

 
Figure 34. Schematic diagram of proposed methodology 

 

OBJECT-BASED VEGETATION MAPPING IN THE KISSIMMEE RIVER 

WATERSHED USING HYMAP DATA AND MACHINE LEARNING TECHNIQUES 

Zhang, C., & Xie, Z. (2013). Object-based vegetation mapping in the Kissimmee River watershed 

using HyMap data and machine learning techniques. Wetlands, 33(2), 233-244. 

 

This study, based on the Kissimmee River watershed, evaluated the applicability of fine spatial 

resolution hyperspectral data collected from the HyMap sensor for both the community and 

species level vegetation mapping. Vegetation maps were produced using machine learning 

methods, Support Vector Machines (SVM) and Random Forest (RF), object based image 

analysis techniques, and Minimum Noise Fraction (MNF) data transformation. 
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Figure 35. Map of the Greater Everglades, Kissimmee River watershed, study area, and field sampling 

locations. 

 

The South Florida Water Management District (SFWMD) provided the hyperspectral data and 

field data for the study. The SVM machine learning method is a non-parametric supervised 

learning classifier where the goal is to find a hyperplane that can separate the input dataset into a 

discrete predefined number of classes in a manner similar to the training samples. There are 

Kernel based SVMs that are used for remote sensing image classification where the radial basis 

function (RBF) kernel and the polynomial kernel are most commonly used. The RBF has a 

specified kernel width (γ) while the polynomial kernel has a specified degree (p) and both 

require a penalty parameter (C) which controls the degree specification. After using a grid search 

method to define the most optimal parameters, the study used the polynomial kernel with p=2 

and C= 2.  

 

The other classification method was a RF decision tree ensemble classifier. The study defines 

decision trees to split training samples into smaller subdivisions at “nodes” based on decision 

rules. At each node, tests are performed on the training data to find the most useful variable 

values at the split. “The RF consists of a combination of decision trees where each decision tree 

contributes a single vote for assigning the most frequent class to an input vector” (Zhang, et. al, 

2013). RF requires two parameters: the number of decision trees to create (k) and the number of 

randomly selected variable (m) for consideration of the split of each node. The study used m=10 

and trials discovered that k=100 was the most accurate.  
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The accuracy of the object based vegetation maps was compared using an error matrix and 

calculating a Kappa statistic. The Kappa statistic serves to describe the proportion of correctly 

classified validation sample after random agreement is removed. The non-parametric McNemar 

test was used to evaluate the statistical significance of differences in accuracy between different 

classifications. A significant statistical difference has a 95% confidence level and a z-score larger 

than 1.96 which is calculated from the McNemar test.  

 

Results 

 

Table 6. Comparison of classification using original data and MNF transformed data 
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Table 7. SVM and RF accuracies with different training sizes 

 
 

Table 8. Classification accuracy with different number of classes 
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Figure 36. Vegetation community map (left) and vegetation B-Code map (right) from the SVM models. 

 

Table 9. Classification accuracy for each community from SVM and RF classifiers 

. 

 
 

 

 

 



 Literature Review of Methodologies for Vegetation Identification and Removal 

Table 10. Classification accuracy for each B-Code from SVM and RF classifiers 

 
 

Conclusions 

There was an overall accuracy of 90% for community-level mapping and an 85% accuracy of 

discriminating 55 species. By doing a minimum noise fraction (MNF) on the data, it removes 

inherent noise in the hyperspectral data, improves classification accuracy, and reduces the data 

dimensionality to decrease computational cost. This study concluded that SVM and RF were 

sensitive to the number of training data and can be the result of high spatial and spectral 

heterogeneity of the study area. It was also concluded that the number of classes decreased 

accuracy.  
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SUMMARY 

FIU plans to employ a photogrammetric approach using Unmanned Aerial Vehicles (UAVs) for 

development of a high resolution (1-m or sub-meter) DEM which will ultimately serve as the 

stepping stone for development of a regional land surface model of the WIPP site and 

surrounding basins. This method was favorable considering its affordability, flexibility, and ease 

of implementation in areas with limited site accessibility. Due to the cost of acquiring and 

processing LiDAR data for DEM development, the use of unmanned aerial vehicles (UAVs) to 

acquire digital photos is preferable. The only setback with photogrammetry is that the images 

acquired by UAVs do not accurately represent the bare earth surface due to the presence of 

vegetation. FIU therefore conducted this literature review to evaluate methods to identify and 

remove vegetation from UAV-based photogrammetric point clouds. Machine learning, as of 

recent, has been used to identify vegetation for the purpose of quantifying vegetation growth as 

well as for the removal process. Machine learning methods included various classification 

algorithms such as Support Vector Machines (SVM), and Random Forest, object based image 

analysis techniques, and Minimum Noise Fraction (MNF) data transformation. Once vegetation 

has been identified, applicable vegetation removal methods can be applied which include color-

based filtering using an excessive greenness vegetation index (VI), Triangulated Irregular 

Networks (TIN) densification from LAStools, the standard method in Agisoft Photoscan, 

Iterative Surface Lowering (ISL), a combination of ISL and VI methods, a normalized difference 

vegetation index (NDVI) and additional algorithms. FIU will determine the most appropriate 

method to be used based on funding resources, equipment and software availability, and site 

accessibility. 
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